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SUMMARY

The viscous transverse curvature efl{ect in counpressible axially
symmetric larranar boundary layer flow has been investigated, and 1t is
found that the efiect is characterized by the parameter A/rc_ which ts
essentially the ratio of the boundary layer thickness to body radius. It
1s showrn that the Busemann and Crocco integrals of the two-dimensional
energy equation for Pr =1, are still valid for axially-symmetric {low 1n
which the transverse curvature effects are considered. By a generaliza-
tion ol Mangler's transformaiion it is then shown that the boundary layer
equaticns arce reducible to an almost two-dirnensional form, making the
analysis simpler for two asymptotic flow regions characterized by A/ro
>">1 and /‘5,./1'0 less than or of the order of unity. It is with the latter
region that the present paper is primarily concerned, and for this case

it 15 show.. thai the additional term in the rnomentum a'.d energy equation,

5

which ailfereniiates 1t fvom the two-dimensional form, behaves ke an

axial preesure gradient. On this basis the results of prcvious authors are
intereorzied, ¥xoept for the case of & "near paraboloid" with zero pressure
cradrent whe © Usimilar’ profiles nan be {ound {or all values of <.’.\3/r0 1t

iz necessary to obtain the "exact” solutions in the range where A0 5 LS
fess than or possibly of the crder of unity by means of asymiptotic expancions
1 ascending powers of a parameter which s small compared to unity hos

proportional to [\’ro. [t 1s shown how the asvinptotic solutions foe the

10ty and dertngerature can be tound for Vaeso pressare gradient when
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n B oa th
the body shapes go hike r_ = ax ond r = ae . The zero

- P approx:mation

15 the Mangler resuli,

3

The first order correchion to the Mangler formulation for Pro }

shows, that at least in the case of the cone and cylinder, the effiect on

hoth the skin friction coetiscient and heat transfer rate can become appre-
~iahie in the range 'vhere

fs/ro ia lese ithan or of the order of nmity,

.,

At a constant L\/ro, the elfects ace increased in magnitude when either

Ees s

the ratio of wall to {x_'\«SQ stream temperature, or¢ Mach number, is in-

-~

creasced., Also, all other c;u'ndji:‘.ons bewing eguatl for the same value of

A, R o oo " . . .
.{.}./ro the skin friction coefficiznt and hest transter increase on the

cylhinder 1s greater than that on the cone,
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LIST OF SYMBOILS

The subscript e denotes quantiiics in the inviscid external {low, and
the subscript " ©O" denotes values in the undisturbed free stream far {rom
the body. The subscript "w" refers to values of the physical quantities at
the wall and the subscript "M" refers to the value given by the dangley for-

mulation,

b3 coordinate measured along the body surface with origin at the nose
Yy coordinate normal to surfave
=)

azimutha! anpgle

o< angle tangent to meridian profile rmakes with body axis

r, distance of any point on the body ‘x, O, &, to the central axis
To = T, x)

r distance from any point %, y, &) io the axis of symmetry, in the present
paper r x,y)l=r (X)+y cose

Ky tengiladinal carvatusz in meridian plane

KZ transverse curvature 1n plane perpendicular to flow, 1/r for axial

symmetry

a cemponent of velociiy wn x direction
v component of velocity in y direction
¥ static pressure

S') meaess density

T  absclute temperature
S characierisiic reference tengih of body
< :

v bournddary layer thickness

oY
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boundary iayer displzierment thickness,

xas constant per gram

specific heat at constant pressure
specific heat at constant volume
ratio of specafic heats, Cp/-’:v
coefficieént of viscosity

cocfiicyent of kinematic viscosity

coefficient of thermal conductivity of gas

enthialpy, < T

p

e o s = e,

Mach number, 4y / \/r ¥ R T,

Reynolds number based on the length
inviscid external flow, utx/;,-e

Prandtl number of tl.e gas, € [k

factor of y.oporticnality in the equation
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. INTRODUCTION

B

1.1 Preliminary Considerations and Transverse Curvaiure
Parameter

The steady larminar boundary layer on an unyawed body of revo-
lution differs from that on a two-dimensi nal shape in that the axialiy-
syrmmetric boundary layer mual not only grow in thickness with dis-
tance along the surface, but in addition must also spread circum-
ferentially as it grows. Clearly therefore, the rate at which the body
circumference chanpes with lexpth will be the axially -symmetric geo-
metrical facter woich will determine the characteristics of the refarded
viscous tayer., The body geometry efféct can therefore be consideced
to manifest itself through the two surface curvatures shown in g, 1
for a poiated boady of revolution. The first is the longitudinal curvaiure
in a meridian plane, denoted by K], while the second 18 the tranzverse
curvature, KZ, of the body in 4 plane perpendicular to the flow. Now,
it is evident that the long:tudinal surface curvature 15 a guanuty winci
18 associated not only with axial symunetry, but also with uny curved
surface in two-dimensional flow. In the usual treatment of houndary

>
laver proplems, 1t is gencrally neanmed that o K..1 and N7 4K, are
i Ax
small compared to umty, here o i1s the boundary layer thickness), in
which case the effects of longiludinal surface curvature ave negligible,
Of course, these conditions impose certawm restrictions ovw the body

shape., and the cifect of roemoving thom has beeon sludwed by NMurphy

3
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for incompressible flow with zero pressure gradient, However, so far as

the present paper is ¢ ncerned this longitudinal curvature effect will he neg-

The transverse curvature of the body, K in a plane perpendicular to

>
the {low, is distinguished by the fact that :{ arises only from the three-
dirnensional nature of the problern, Of ccurse for a body of revelution the
section tn any transverse plane is by definition a circle, so that here the
curvature is simply the inverse of the body radius, r o at any position along
the axis. It 1s the purpose of this work to examine what efiect the 1niroduc-
tion of this transverse curvature has on the values of such quantities as the
viscous shear and heat flux particularly st the body surface, The present
paper indicates the fundamental physical and mathematical 1deas involved;
the rore detailed computations and numerical resulis being rescrved for a
forthcoming report. In addition, the future work will contain a morce com-

pleie analysi2 of the ¢lfect of poessuce gradicun

saymrastric floswy
and its "interaction'' with the transverse curvature efiect. It should be
) , . 2.3.4
noted at this point that the hypersonic self-induced pressure effect
penerated by the interaction of the longitudinal curvature of the viscoas
layer with the external {low, could under certain circumsiances become
moere important than the transverse curvature effect itself. Although this

imporiant question certainly requires further investigation, it 1s beyond

the scope of the present paper except for certain brief comments.

5

Cheng  in unpubligshed lecture notes has shown that in general a

selution 1o the boundary laver problemn, in which the itransverse curvature
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effect is considered, is not possible by a single trarsformation of the
eguations to a two-dimensional form withcut som> assumption as tn the
magnitude of the curvature effect. Clearly, 2 measure of this magnitude
so far as the viscous {low 18 contcerned would he given by the ratio of
the transverse geometricai body curvature to the transverse curvature
of the viscous layer itself. Because of the axial symmetry the rate cof
change of curvature with respect to the azimuthai angle is zero, so that
while two parametei s measure the longitudinal curvature effect, only
one is needed to characterize the transverse curvature effect,

At this point let us define the coordinate system x y, @) where
the body surface 15 given by y = constant =0, x is the distance measured
along the body {rom sorme reference point wmch wta the present vaper
1s taken to be the nose cf the body (x =0), and @ is the azimuthal angle,
‘see Fig. 1), Let r =tix, y} be the d.s.ance {rom any point ix, y, Q) to
tihe =2x1s ¢f symmetry, and suppose Lt T x) 1s the distance of any

. . . ! AY . “
poini on e Ludy (4, O, T o the continl 2mic, M o2e accumerd the

thickness of the bosndary layer 12 2miall compared with the longitudinzl

radius of curvature, l/Kl , then at any point 1 the boundary laver
s ES VA ro‘x) + Y COs A&

where & 1s the angle the tangent to the meridian profile males with

the axis, Although the charvacteristic viscous length is the boundary

Inver thacknass e it aiore convenient to deal with the displacement

{1
i
i
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" rs - o o . o %
thickness, & *, tecause it is capable of precise definition. It follows
that the curvature ratio is given by

K

2 5
DO g o Bmosel | 4
K. Tr ’ r - r
& (e} [e3
viscC

Here, )\ - §*cose{ 1s the projection of the dispiacement thickness onto
the transverse plane, (see Fig., 2j. Thus. so lar as the gresent problem
15 concerned, the siguificant parameter 1s the ratio of the boundary layer
thickness, or more precisely the displacement thickness, to the body

SN .
radius. Therefore. certain simplifications 1n the complete axially-
symmetric soundary layer egquations of continuily, momentum, and energy

AN

should be possible, depending upon the vatue of L3 /ro in comparison to

unity,

1.2 Description and Range of Mawn Flow Regiong

—

Referring to Fig. 2 - tn which a cone in supersonic flow is chosen
ta lustrate the body of revolution - two main asymptotic {filow regions

over a given body can be distinguished primarily upon the basis of the

* See discussions p. 123, Ref, 6, p. 18 {f,, Rei, 2, and p. 381, Ref.
7. By definition the displacement thickness in compressible tlow is given
by

L2
o

| ?
| L ( e u/ De U ) dy
Ja )

&

N i S
%% This statement assumes cos X to be unily so that £.> T,

15 almost ftrue far the slender bodics which are under

4 condifion whict
zorsideration, cxcepd near & blunt orward stapnalion powat,
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order of é/:.\ /ro g For the body of Fig. 2 the two main flow regions
are respectively, I, a tnose! region distinguished by the fact that
A/ro >>> 1. and II, a "downstream! region where A/ro is "of
the order or less than unity''. The applicaticn of the term asymptotic
flow recgion to the range where /_S/rO is of the order or less than
unity might seem somewhat unjustified, since by accepted definition
one would require that /..\/ro , or at least '/ /rO)2 be srnall com-
pared to umity. However, the region is referred to as asympotoiic
because, as will be shown, the asymptetic expansion parameter for
the physical variables, which is direcily propertinnal to [.‘_\/ro , 1S
in general smali compared to unity when £5 /ro 1s of the order or
less than umty.

The two regions I, and ll are separated by a "transition" zone
whetre A/r0 18 intermediate between the nose and downstream
region, In the present investigation the nose of the body 1s consider-
ed mathematically sharp and the "immediate' nose region where
slip, temperature jump and other kinetic effects couid become im-
portant is neglected. This would exclude from consideration a zone

whose extent for compressible flow in terms of the local Reynolds

* Here, a pointed nose body of revolution 1s considered, in
the case of a cylinder with its generators parallel to the flow,
(sufficiently slender so that the A /rh e{fect enters). the regions
will be reversed in their relation to distance from the nuse when

compared to the pointed body,




Y
~ e .
number would be of the order of RP.y ~ 10 M where here M is the local

Mach nurmnber. The overall flow problem will then be treated in such a
way that all possible information about the nature of the {low regions down-
stream of the "immediate' nose region 1s obtained, which does not depend
on the detaitled history of the flow in this regren. However, ss s nsuval :n
bourdary layer theory the origin of the co:irdinate system will be taken at
x = O, or the nose where the boundary layer thickness 1s suppcsed to be
zZero.

Before discussing the regions in more detail, a criterion is needed
to determine the extent of the various zones., This can be obtained fromn
the iollowing relation for an insulated cone of haif~angle < | in «upe=-sonic

%

flow

/A\ (O 99, + 0375 /'Vl: \'l ,"Z
(1) e = ORI A

¥ = 7=

AY

2

3 — . //'r\ .
M Loy X j\l(..Q.x/‘e

Here, the specific heat rauio has been taken equal to 1. 4, the subscript tten

* This relation was ohtained using the flat plate, compressible laminar
beoundary layer solution for constant wall temperature and specific heat, a
linear viscosity-temperature relation, and Pr =1, (sce e.g., Ref. 2}.

f(f&;jz\ S Tovast 2=
(ia) ‘“ZZ“' 5{- = 1+7&] —]::‘ + 0.33;1(!'!)/“?&

From Mangler's transforrnatmns, division by Jr? grves the axially-symmetiric
value for a cone 1n supersonic flow, valid 1n the range where Z.\-\/ro < << 1.
‘This solution i1s exarmined when the zone Il 1s considered, its use 1n this in-

stance is only to permat an estimate of the lateral exient of the regions being

studied,

B T o o e U AL XSRS S i N oA A el Sk s 2, Y RS IRIDR ARSI AT AN 80 e YR
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refers to the inviscid values of the physical guantities downstream of
the nose shock, and C, 15 a parameter which appears in the linear
viscosity-temperature law to be introduced laier. 1t must be emphasized
that the above relation is orly intended to give the orders of magmtude
involved, Thus, it can be seen that the more slender the cone, the
closer to the nose, or the higher the thight speed, ihe greater wili be
the transverse curvature effzct in compressible {low,

Figure 3 is a plot of Eq. 1), with L/:S/ro as the parameter,

where the abscissa is the Mach number behind the conical shock, and

- (e T
the ordinate 1s /OvV\d ) (Re.), ., It is imporiant at this point to

note that it is the ordinate paramecter when divided by J?whxch turns
out later to be the proper asymptntic expansion parameter, (§'), for the
cone. In this figure, (Rex)C 15 the Reynolds numbe:r based oan conditione
downstream of the shock and distance along the cone surface. The
Reynolds number is to be interpreted as denoting the lateral extent of
b veEisn i whidh the lrifgvemes forvaters nifert 15 oFf imperiane

for the particular Zl/rO range being studied. Strictly speaking of
course, the cone solution should only be valid for supersonic flow

with an attached shock, 1n order to satisfy the condition that the
pressure gradient be zero, however the values are carried down to
zero iMach number for conlinuity purposes.

Figure 3 iz even more gencral 1f 1t 15 recognized that to the

same crder of approximation 1t could be used to discuss the cylinder
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by the arthice of dividing the ordinate scale by J ‘ and considering tan X
to be repiaced by ro/'x where r 15 ihe cyhinder radius and x the distance
{rom the nose. In this case, the subscript "e" would denote the conditions
in the undisturbed free stream far {rom the body. Wiih these substitutions
the ordinate is then exactly the asymptotic expansion parameter, ’g’ ),
which will be used luter for the cylinder,

What is impoertant to note 15 that {or e /r, 77 1, the asymptotic ex-
pansion parameter E , for both the cone and cybnder), will have a maxi-
rream 2lve of around 1/4 1n supersomc flow. Furthermore, 1ts value will
drop off rapidly with either increasing Mach number ¢r decreasing /)/ro

The nose region (1) is characterized by the fact that A/ro >> L
In other words, in this zone the stress term arising from the transverse
curvature becomes of the same order of magnitude as the usual viscous
siress term in the momenium cquation. An analogous statement holds true
for the heat flux terms in the energy equation. Obviously the above con-
dittens acs: aael fwa only cortain ranges of Mach and Reynolds numbers., In
actuality L\./ro I 1U 1s mosi probabiy the iower limit for what could be
taken to be a value of the transverse curvature parameter which 13 supposed
to be large compared to unity, Therefore, if the nose region 1s considered
to be represented by that area above the hine -_/:\:/r,;‘ = 12, ihwen tf foellows al-
most immediately that the actual practical range in which this region has
any importance may be rather iimited below a Mach number of 10, In jact

8] :
17 even though the

5

5= = R
if 1__\/1‘ = 10, ihe cone half-angle has tc be as small a
o5 .

’

Mach number be as high as 7.7 wn order that the eficct extend to a Reynoids

e

I
i
]
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nurrbe e of 16, 000, (Cef\j 1, LanONJ.Rc ) =1,75), However for Mach

numbers greater than abont 4, when the seli-induced hypersonic viscous H
e e S 2,3.4
parameter X = JCP N // (Rc ) == 1, the hypersonic visccusz
effects can become important. Using X == 1 as a criterien. calculations
and Fig. 3 show the nose region to be affected by the sell-inducerd pressure
1z 3 M 2 Y4 131 Y
gradicnut even {or cones as sieader as )] | Ii1s likely therefore, that
abhove Me == 4 the hypersonic viscous phenomena may be at least as
important as the transverse curvature effects for the region in which
[_\/ro >> 1. In any event a zolution for the nose region is useful in
the sense that 1t serves as the himiting case with which to biridge the
trans:tion' zone. It could also conceivably serve as an aid in checking
; : TS
any approximate solution intended to cover the spectrum of 4 /r
o
Recently this regime has been considered by Qtewarfsor\(} who
examined the case of the "infinitely' thin c¢ylinder in the absence of
preszure gradients 1n incompressible flow. He found that for this
limiting case the leading term in the asymptotic expansion of the axial
velocity component 1s simply the man stream velocily and the next
10
term i3 the samce «s that derived by Oseen's method. WMark working
. ander the direction of l.ees has obtained "'exact! solutions to the large
L/,X/'ro problem for the incompressible flow over a paraboloid cf revo-
lution with zero pressure gradient, utihzing Stewartson's result that
the limiting form of the fiow 1s of the Oseen type. Knowing the exact

solution 1£ 15 understood that he has developed an approximate momen-

turn integral method e soive the large (, /1 , problem by using a




- 10 -

[ . . 34 & B .
Kérmién-Pohthansen technique which is modified Ly adding an appropriate
15
logarithmic term to the velocity distribution. Co:per and Tulin however

say that Pretschu tound similar’.\ vetocity profiles in treating the same prob-
lern as that considered by Stewartson. This result is in direct contradic-
tion to the one found in Ref, 9. Unfortunately at the time of writing the
authors have veen unable to obtain Pretsch'!s paper in an effori ic resclve
the apparent contradiction, So far as the present paper is concerned this
region will not be considered further except insofar as the boundary layer
equations which are valid for it a.'¢ wriften down. and also insofar ns cer-
tawn general solutions are obtawned which hold for all values of s /ro . For
example, refercnce is made here to particular integrals of the energy equa-
tion and to the "zero pressure gradient{" flow over a nearly parabolic body
of revolutisn for which the 2quations are noted.

Just downstream of the nose region is the transition zene 1n which
A"’/ro ig nzithnr large compared with ore, nor of the order of unity, In
Fig. 3, this zone can be considered to be encompassed by the area contain-
ed between the curves of A /ro = 1 and 10, Here, 1n general analytic
solutions of the equanions of rmotion are difficult to obtain, and 1t 1s probable
that an extension of an approximate momentum-ntegral technique to this
domain would be required in order {o deternune a solution. Of course if
the large A /ry result s known, 1t may also be possible to "link up® a

solution through this region.

In region I L/:.\J/ro 1s of the order or less than umiy. 7This zoue 15

“ Similar in the sense thal the velocity distribution function 1s a func-
tiun of a singic variable ol the

torm § tirres a {unciiun o wheve x und y
are respectively the disiances ineasured atong and nerpendicutlar to the
buandary.

|
i
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characterized by the fact that the effects produced bv the iransverse
curvatiure can be considered io be essentially a perturbation of a flow
which, in the limit of Z_}s_/ro very much Jess than unity approaches a

two-dimensional pattern. That is. it 1s clear that as one proceeds down-

stream along the cone the transverse curvature effects must decay,

-

In Fig. 3 thhs downstream region may te considered as the area lying

below the curve of él/ro—— 1. It is quickly evident from the curves
that the "weaker' transve se curvature effects can extend cover the

major portion of the body, (say &« cone whose half-angle is as much as

n

5 ). for Mach numbers which ave not lurge, Actually this domawn can
be thought of as being divided into three sub-regions each one of which

is simply a limiting case of the other,

-

: A
in the sub-region {3 Fag., 2) very far downstream of the nose,

A .
P, = >0 so that 42 /ro tends to zero, and K; /'{2 e
body V1sC

Here, the effect of the axial-symmetry is negligible and the {low

-

approaches a two-dimeNnsIONal PALLEL 1, Lh piateive hewwo ¥,
likely that this demain would be reached beflore transition to turbulent
= =0 , .
flow tock place. Feor example, on a 5 cone at a Mach number of 3,
; 1 7 / —
the Reynolds number 1s already 1.5 x 10' for £ 5,-ro = 0.01.
. e 2N
Somewhat further upstream, n the sub-region (\:;/) , although

/\/ro is small cormnpared Lo unity, (say 0.1 or iessj), the flow can
nevertheless no longer be considered two-dimensional tn character,

By our definition then, this would e the area lying below the curve !

uf /;/-rp =2 Q.bam Frigo 30 Here, the carcumierontial sproaring ol g
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the viscous layer must be conswdered.  Howover the approximation can be
made in the boundarv laycr equations that r x y) == ro(x), wn which case the
raomentum and enerpy equations bscome two-dimmensional in form and the
continuity equation is consitderably simplified, Mangler has shown that in
this case a direct transformation of the compressible boundary layer equa-
tions for axially-svymmetric flow to those of a two-dimensional flow is possi-
ble when the gas is perfect with constant spvoific heats, Aciually although
this transforrmation was not expressed formally until 1945, it had been used
12

in essence as {ar back as 1908 by Boltze 1n the treatment of axially-symmetric

. ” : . 6,
laminar {lows: (for other exaraples see Goldstein .

—

1! is rcached. where

Frocecding still further upstream the sub-region |

the boundary layer thickness begins to approach or become of the order of

ihe body radius, . the spinit of the foregoing defimition of erder of magni-
tude}, in which case the transverse curvalure takes on still mmore importance,
Here, we would be concerned with that area in Fig. 3 which hies between the
curves [_X/ro = 0.! and L/.\/ro = 1, One must howaver coniwnue tc bear
in mund thai any treaiment vahd for this regron must actuallv encompass
those zoncs downstream of ik, The present paper then 1s primarily concerned
with the investigation of the compressible laminar boundary layer flow in
such a region where . /rO 15 less than or possibly of the order of unity,

1.3 Review of Previous Work for /N /ro L.ess Than But Not
Necessarily Small Compared to Usaiy

nroaches

Iy

As [ar as the present anthors know, all the sa-called exact ap

the above prodem have been vestrwcted 1o mmcompressibie eylindresl

o

3
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flow. In this case, the body radivs r s a consfant, and r= e ol |
{see Fig. 1). The first solution was given by Atkinson and Goldstein
{Ref. 6, p. 304) in their investigation of the wnternal steady incom-
pressible laminar boundary layer ncar the entry of a cylindrical pipe,
Their analysis also included the effect of a self-induced pressure
gradient due to the growth of the viscous layer in the pipz, A sotuticn
was obtained by expanding the stream functicn in an asymplotic series

in ascendiug powers of [x/r where the coefficients in the sevies

6} #
o . /2 20 .
w. oo ounl; funchons of the varishle (x% -rg)/ =0
\or /

o}

In this manner the problem was reduced to the solution of a series of
ordinary differential equations, the first of which was itz non-linear
Blasius equation, while the remuining ones were third ovder linear,
inhomogenous eguations, It should be noted at this point, that thes
technique employed the 1dea of expanding the physical guantities in
powers of the transverse curvature parameter Y /'rU o SR

fronigis kK 5 ¢ . oo e VOS2V .- ey # + -
W Lilel L Ul ks was Lahpellllag sired ‘3,’ the sathere 16 nf

course not known, In any event, 1t 1s clear that the first term rapre-~
sents a flow which 1s two-~dimensional in character, while the succeed
ing terms in the series characterize the effect of the transverse curva-
ture as well as the self-induced pressure gradient.
13
In 195], Seban and Bund simply extended the preceding analysis

to inciude the "incompressible” energy equation. lIp the:r treatment

the problem considered was that of the exterior steady yncompressible
Yy

Now over o ayhinder with constant pressure, that s, the seli-induced
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pressure gradient was taken to be zero. Tho variables used were the same
as those intrcduced by Atkinson and Goldstein, Their calculations showed
that the transverse curvature effect increased the local skin {riction co-
efficient and heat transfer rate, and that this increase could become appre-
ciable, However, the displacement thickness of the boundary layer 1s only
slightly reduced in comparison with that of the flat plate. Furthzrmore, ihe

recovery tacicr appears to remain unaffected within the probable numerical

errors, The present authors will have mcre to say regarding the signifi-
cance of these ruesults at a later point in the paper.

14
Sowerby and Cooke periermed the same analysis of the mormcntum

z

w .

equation for the steady incompressible flow over a cylinder as did Seban
and Bond. in addition, they aiso treated the znalogous non-steady "Rayleigh
problem’ of the infinite circular cylinder started impulsively from rest in
its own plane. They found that there is a regime 1n which the boundary
layer growth is independent of the space variable x, but dependent on the
time variable t, so that here x is replaced by t and L\/ro "\f‘lr—tﬂ/ro . As

one would expect. the solution of this linear problem turns out to be an

asymptotic expansion in powers of [ t,7r'( for the physical guantities, such

Y
as the viscous shear.
. — 15 . : '
Finally, Cooper and Tulin “linearized the incornpressible boundary
layer equations of raction 1 the cylindrical polar coordinate system and

again determined the solution to the problem of the steady fiow over a

cylinder with no pressure gradieni. In this case a general functicnal

solation which cuseatially is5 valid for oll values of /A/rn could be given




[
t

in terms of Bessel functions of zero ovder, However only the asymptotic
.oluti { ha 25 F 5 4 sidesrad an SorE ;e
solution for the £ /r  range considered in the present paper was given,
The fact does not seem to have been noted that their asymptotic expansion

was 1n powers of a guantity proportional to the physical transverse curva-

ture pavameter Q.‘./ro ., They also found a general solution to the linear-
: ; ; ; L
ized preoblem of the unsteady motion without a nressure gradient, of a i
i
cvlinder 1n axial flow which starts from resi at time t = O. Here, only ;
the particular case of the impulsive start was treated in detail, with
analogous resulls, a3 pointed out previously, to the stecady flow problem,
A general solvbtion tor a lavge cluss of pressare gradienis on a cvlinder
. R 16 ]
was also obtained, although only the Falkner-Skan type was treated in
detail. Again, by means of an asymplotic expansion in a quantity pro-
portional to é;\/ro they showed that the iransversc curvalure effect
increased the wall shear stress for both favorable and adverse pressure

e ad -
Fee und that the

gradients. In the range o1 A’.\_\,"ro <,
inrrence 1n wall shear on the cylinder for favorable gradicnts when com-
pared with the shear on the flat plate for the same favorable gradient,

is less than the incrzase on the cyhinder 1n uniform flow when compared
with the flat plate in um:form {low. The converse 1s true for adverse
gradients. The sigrmlicance of these results will be discussed later :n
the paper. For the case of a constant external velocily gradient over

the cyhinder they showed thal sinnlar pioefiles existed, and derived the

ordinary differential equation defiming them.

LR s

SRR
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1.4 Plan ot the Preseni Investigation

in the present paper a theory is presented of the transverse curvaturce
eifect on comrpressible laminar boundary layer flow over bodies of revoiu-
tion, FYirst, it is shown that whenever the Prandti number is equal to unity,
in spite of the transverse curvature eifect the Busemann integral of the

17
enzrgy couation is siill valid for an insulated surface with an izoenergetic
free stream regardless of the pressure gradient. Furthermore, it is also
f ~ 3 i H 18 2

showyn that the Crocco integral of the enaorgy equation ~ holds for the con-
stant surface temperature zero pressure gradient case.

Next, for constant specific heal and » perfect gus a peneralization of

Mangler's transformation is considered, which also alters the x, v scale

to some new scate x, y in a manner which depcnds upon the body shape.
This transformation reduces the boundary layer equations to an almost two-
dimensional form. The additional tzrm which acises in both the momentum
and energy equation is shown to have the same effect as an external favor-
able pressure gradient. O this basis, resuits obfained by previcus authors
are interpreted and discussed, while the results thai might pe expected irom
the present work ave also reviewsad,

The assumption of a linear viscosity-temperature relationship is then

19

made, so that by means of Howartht's trensformation which is an alteration
of the scelie in the direction normal to the body surface, the equations are
reduced to an "tacompressible form”, For zimpliciiy the probiem is niow

restricted to the case of zero pressura gradient, althouph the metheds

develoned are applicable to a more generai class of {lows, The valwdity of

v
N S AT e Yo



restricting the problem to constant pressure flows is briefly discuscsed
in apite of the {act that the man Lurdenr of this study 13 left foy a forth-
coming report, Finally, the partial di{ferential equations are trans-

— PN . .
formed to an x , Y/jx coordinate system, where here Y is the stretched
normal coordinate. From these eguations it follows directly for a particu-

iav ciass of bodies not toe different frora 2 paraboloid of revolution, that

the momentum and energy eqguations reduce to ordinary differential equa-

)
. . N £ ~ 1 o . » a
tions in the single variabie ‘l/ ~~Y/j%. 1t is the equation obtained in

10

ihis case for incormpressible flow which is being treated by Masrk .
For more general shapes solutions can be obtained by expanding
all physical quantities in asymptotic servies in powers of a quantity pro-

4
poriional to é_\_../ro , where the coefficients are functions only of the

variable ) . Thus any physical guantity G{x, y) can be wriiien as
t

(@) Gty =G () + § G I+ I G, in) + .

* :

where ¢ 7 [L\./rc‘ < < 1, and where C’o' G{' GZ' etc., are the
th . T ;

zZ€ro first, sccond, etc., order approximations respectively. In
particular the vejomity and ternperalure distribution functfions are ex-
panded 1n this way, and the partial differential equations characterizing
;
f

the motion can be reduced to a double wnfinity of ordinary secend order

i
; ; : S th : b
differ=ntial equations., in thiv cane, the zerc cordey solution is that

due to Mangler, while the higher order approximations reprasent the

corrections arvising from the increased transverse curvaiure effeci

i : th
over that introduced 1 the zevro  approximation,




The class of bodies considered in the present analysis is of the form
. bx : - :
Lo = Az and r, =ae {a, b and n are positive constants). The cylinder
{(n=0) and cone (n == 1) are seen to be special cases in which the assuraption
- o . o 3 > . '
of zerc pressure gradient is justified (or ali Mach nambers for the cyilinder,
and for supersonic {low [or the cone, Althcugh the equationc for the other
body shapes are given, only these two cases have been solved numerically
Y & & B J y
to the point where the skin {riction and heat iransfer coefficienis are evaluated,
S = Ay 2 .
'or both the cone and cylinder only the first order or &a/r corraction to
the Mangler forrnulation has been obtained, and then only for the case where

the Prandtl number has been taken equal to uwraty., Finally, the problems

remaining {or future investigation are outlined,

L., THEORY

2.1 Boundary Layer Equations for Axial Symmetry and Particular
Integrals of the Energy Equation for Pr == 1

In the present work it is assurned that the specific heat and Prandtl

T g eV g a4 Wi o i3V 1 o . PR e P AL, IS i 18 A G RES E L e T o cam
BURIULL @t e LuilSiasnt, e Oy fosces a.c NG K SaC, Al wiae wid LS Sulyl

the perfect gas law

Here, pis the static pressure, /3 the mass density, T the absclute
temperature, and R the gas constant per pram. As pointed out previcus-

1v, the usua! assumption of negiip.ble tongitudinal curvature ol the meridian

bl

2
profite, that is S 'z\'.l and ¢ dis smatl corupaved to unity is still made,

dx

vAL feast idealisticaily witmia the usaal poundst s Javey approximas -

;
f
tions,  Tiis poirt will be vansideved later e the paper. g
i
i
‘




Howewver, the transverse curvature zffect present in the axiaily-

K.

symmetric flow is considered, so that 5 2

can be of crder unity,
Following the usual order of magnitude analysis, the axiaily-

symmetric boundary layer equations become:

. I3 . *
equation of continuity,

L
2x

(4) (pre) + fg(/wv\) "

momentum eguation,

(5) sl wle 5 ar oy, Ldb 37 dud L ou M
7L e 3'3) jﬁ ' az(/“ | o+ A2 L

energy equation,

;o

(6) /)(Ma_;+véﬁx

e - W

2y >

! 2 N

ap ;-[3.3.-(/“&%% 31 34

p LI - 2 e
Here, u and v are the velocity components in the x and y directions
respectively, and h = Cp T is the enthalpy of the pas where “p is
the specilic heal al consianig pressuare, loe Frandil numiber,
Pr = cg/a\' /k where /u, is the coefficient of viscosity, and k 19

r

the coefficient of thermal conductivity of the gas. It is to be noted

that the static pressure across the boundary layer 1s still found to Le

constant to our order of approximation,

* There is some guestion regarding Lthe generahiy of the caon-

tinuity equation wn this {orin, however, so far as the present papev

is concerned it is justifiable to write 1t an this way,




20
The boundary conditions vn the velocity {ollow from continuity and
the requirement of no slip at the wall, The itemperature may satisty the
condition that there is no heat transfer at the wall, or the surface tempera-

ture may be specified., Thereluce at

y = o= v =
h o= b, non-ingulated case
{7a)
or abh _ O insalared case

At infinite normal dislance 1rom the sociace, or the "edge' ol the boundacy

iaver the values of v and i arc apecified, so that for

{7b) h o= b

Here, the subscript ¢ is uscd to denote the inviscid flow vaiues 5o that

in the case of the cone, for vxample, this would represent the condilions

on the downstream side of the conical shock, Of course, for zero pressure

gradient all the tnviscid quantities,  u,, hg, Pe etc..., ave constant.
If the Prandtl numbere ol the gas is equal 1o unity, then a most iuiescs?t

ing result 15 obtained by roultiplying the momentum equation by u and adding

this product to the encegy vqualion, to give
p Ry 8

Yoo a discussion of Hias peang see op, 38 7

ol Refl.

as an example.
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A particular integral ol this equadion is given immediately by

o €
(8) h -+ 172 u o vuasiant

17

This is of course the weli known Buscmaan integral, which is valid fer
an isvcnergetic fres siream and sninsulated surtace, regardless of the
pressure gradient, 1t says that the cnergy per umit mass in the boundary
layer is a constant, and therofore, al jeast in the caszse of Pr =1, the
transverse curvature effecin leave the recovery temperature uns hanged.
This conclusion is frue for all valuces o £y /r‘J . and its significance
can best be ilustrated by noling thal ithe recovery temperature on an
insulated neede, ifor £r =1, willi Le the same as on any insulated two-
dimensional airfoil,
in the vase of mero pressare yradient, it is fegther found that

P

h == A 4+ RBu - i/2 u
i5 a particular integral of the boundary laver momentum and energy
equations, If the 2oundsry conditions of consiant surtace and iree
stream temperature are apphiod Lo the evaluation ef the constanis &

and B, ther the above relation can bhe written as,

3 3 g ;o b >
9 T Twy ((lpsd MO - Tef fa) - ¥ M £ by
g Te [ 2 B, \'ueJ 2 < \ue)

: i 18
This integrai ts the weil kaowa rooult fiest found by Crocco  in connec-

tion with the flow over 2 hal plate with consiant surface temperatuve,

Therefore, for Prom ! oie can concbude Fhat! on an asially - syrmmrmetnc

L.

a e T - L # (e L.
Naverse cutvatre elool wedy not alter the

vody tor all La/r  the r

4

a




o R

form of the temperature distribution through the boundary layer from that

of a flat plate. In other words

the significance of this result can be summar -
ized by noting that, at least for Pr = i, the Reynolds analogy parameter
which is proportional to the ratio of the surface heat transfer to the skin

friction, will be the same on a needle as on a fiat plaie.

2,2. Reduction of Equations tc Almost Two Dimensional Forra and
Physical Interpretation of Transverse Curvature Terms

i O /e, << 1

2% o
, then the transversec curvature ferims, /‘1 - o
ot A . . .
= , can be neglected in both the momentum and encrgy equa-

Bla o -
tions, so that they then assume the two-dimensional form. This is tanta-
mount to replacing r(x, y) by r (x), which, if carried out in the continuity

equation reduces i to

With the compressible axially-symmetric boundary layer equations in the
above form, was able to transiorm thern o those of a two-

dimensional flow.

He accomplished tnis by a change of independent varia-
ples governed by the relations

FEA Joh [y Yo
(d X}IV" - ,_‘\- A% ) \OJJ;} )M = ddj’
e L
where L. is

)

a characteri«tic fixed refere

ce length. A suitable redefinition

of the dependent variables was also required; the reader

“is referred to
Manglerts original

In the presant snalysis., because AN may approach the order of

o
L

anity, 1t is not poessible to repiace #f{x, yi by x'od_x}, and heswe o reduc

WLk T AT A ML NP S MR T, R MR
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the axially-symmeliric houndary layer equations to a twu-dimensional
form by Mangler's {ransformation. However, by a sumpie generalisa-
tiorr of this transformation, the equations can be put into a nearly-two-
dimensional form.

The transformation of independent variables from x vy to x, |

is made by means of the relations

by
- Vo = ~+ (2, _2
d/){ = i pbx f)(/\? = -——-'.‘._._-2 L

Here, it can be seen that the x-coordinate transformation is the same as
that given by Mangler but in the change of the independent variabie vy,
r,.%) 1s replaced by r(x,y). A geometrical interpretation of the normal

coordinate transfiormation {ollows fron the fact that

jr cos & dy
cose

y o~ jr(x,y) dy -

= transverse viscous area) secX
In other words, the coordinate ¥ is proportional to the boundary layer
area in the transverse plane, {sce Fig. 1}, projected onto a plane normal

tn the body surface. On the other hand

- jz
X r dx
1s)

so that the coordinate % is proportional to the volume swept out by the
prop P Y

boey., Mow, the transverse curvature offects are assocvated with the

circumferential spreading of the viscous layer. Therefore, the vate at




= e

which the body circvonference changes with length will be the axiaily-

symmetric geometricsl tactor determining the characteristics of the

houndary layer, it is clear thal the

distance along the surface, essentially characterizes the overall geometry

of the hody while

viscous curvature

ing to reduce the equations to a near two-dimensional form, the x

x coordinate which is the distocted

the y coordinate involves the resultant transverse

efiect. Therefore, it is not surprising that in atlempt-

formation should be the same as given by Mangler. On the other hand

Mangier replaced every point in the boundary layer by the corresponding

surface point. Therelere, the V"corresponding” projected viscous area in

Mangler's case would ke only a first approximation to the "proper" value

given above,

=
w
)
bop]
i
o]
147

N} the following transformaticn forraulae are obtained,
T N - -
:?_ = .{° ':o'__ g 24 —@..
% L * 55 3¢ 9%{
2 . 2
) L oy
! 3G

whove it ic nnt necessarv to evaluate 3 . As indicated in Section L1

from the body geometry, r = r (x) 4= y cos™X , so that

from which,

(12} b)

and

n

= -+ ~ 2
3 0= = *«ﬁ = _°% + g end
4 S ¢ L a L.
S :
o= | 4 e g
e ' Eks g
P -
. { o _ o L. Lo
R .2 ] e
1.‘-.;; ‘\ N .f:‘

trans -
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1t a new velocity v 1s defined by,

i

#1 ? 3

'

- ¢l L .1
(13) U 4\2_ it + g 3—1‘ LA

then from Eqgs. (11} and (12) the bourdary layer equations [Eqs. 4) - (6)_J

become.

equation of continuity,

= ( ]

ol & a 7 N \

L o o o o

aliomd 3 (o, )
,_y/‘}‘ au '\ ¢ I‘; /
i , g7

energy edqguation,

ok T A
(16) P /u = g AR 9—1{)
{

ok ¥
1

- oNg

1 . -3 i s e " 4 . o o Lobee g A ek 4 YT
ey t,un;,u‘.un,y LU LIV v D aww L d (AL AVENCYF VTP RS YU 1= W ARPE WL & SR VY

campressible flow in the x , ;' plane with velocity components u and
v re spectively. The left hand sides of both the momeantum and energy
equations are also two-dimenasional in form. Therefore, the non-two- |
dimensional terms on the right hand side of the momentum and energy
eguations rnust carry the burden of the increasced transverse curvature
effeci over that which is obtained ssing the NMangler formulation. Fox
zirmplicity we will coneider only the additional shear term in the

oI nium eguaetion an tneking 8 gquatitative cxacunstion of the Unanges

i e it e e el S N M e e S et i
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wrought by these terms. since analogouas conclusions will hold for the

added heat flux anrd thssipation terms in the enerpgy cqguation.

+
in the present paper, we arve concerned with the case where in zero”

approximation the effect of the added shear term can be neglected, so that
any changes which arise can be cvonsidered essentially perturbations in
Z,._e/ro on the Mangler {low. In this case, as will be shown, the added

stear ters hehaves like 2 peessure gradiznt in two-dimensional flow. For

ot

he time being, witheout going very deeply into the underlying reascons, this
result can br scern cics iy theoayle wwn analopies,
The tirst analogue 1s the so-called "weak interaction” self-indnced
2
pressure gradient which i1s genevated in hypersontc flow, as the result of
the mnteraction of the longitudinal curvature of the viscous layer with the
external flow. In this case the cffects produced by the seif-induced pressure
gradient are essentially perturbations superposed on an already existing uni-
form flow. In the present problem there 1s an analogous "interaction” of
the circumisrential growib of the viscous layer, not with any external flow,
b
but rather with the shear pattern obtained by considering the effect of the
rate Of chanee ol circumierence to be small, or even absent. Thus, it is
o
i A,
a phenomenon perinrbed with respect to the transverse curvature, ,,r."__}./r,’ )

s <
making 1t a purely ' axial™ effect. The second analogue stems {rom com-
parisens of the additional sbhear term to the modified efiective pressure
gradicnt term which arises as a result of transforrning the normal coordi-

19
naie in a planae compreasible flow by means of Howartn's retution, in
order to reduce the equalions e an nedompressivle form,
RED PRSI
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Accepting that the added shear termn can be censidered to manifest
itself as a3 pressure gradient, then the results obtained by previcus authoers
hecome ciear. Now, it must be emphasized that it 1s not at all neces-
sary to utilize this pressure gradient analogy to show the direction of
such general quantities as ithe skin {riction., This could follow directly
and perhaps even more simply from considerations of the three-dimen-
sional nature of the problem, such as the retarding force per unit area
when compared with that of a fiat plate. However, it is used because it
does show up clearly not only the direction but also the form of many of
the results, at least in the region where [;A,/ro is less than unity. For
example, in the original work on entry {low in a c¢ylinder by Atkinson

b _
and Goidstein, it explains why the self-induced longitudinal pressure
gradient appears in the eyuations in exactly the same manner as the

* 13

transverse curvature effect., In the work of Seban and Bond on the
incompressible flow over a vylinder, it answers why
SluUuiu vt oIt,  Thie fallows from the fact that since the transverse
curvature term 1s always positive, then it behaves like a favorable

pressure gradient which would tend to increase the skin {riction co-

6
efficient, A favorable gradieni will als¢ incvcase the heat transfer
2k 22,23
coefficient . but as 15 well known from planar caiculations

roperty shows up frovn work by the prasent

p
authors®¥ sn the self-induced pressure gradient generated irn the
S




the change v recovery foctor 1s small . As one might expect these
same results were obtained by Seban and Bond in their calculations. The
smallness of the numerical change in recovery factor suggests that actually
the change might be due 10 additive numer:ical errors, whereas mathe-

; . ‘ 24
rmatically the change 1s in fact zero. This was shown by Probstein and Lees
for the pressure gradient generated by the hypersonic induced effect over
a flat plate in the weak-interaction region. Finally, the fact that they
found the boundary layer displacement thickness to be only slightly reduced
in comparison with the flat plate value is a result which is also to be ex-
pected. This implies that most of the changes in velocity rnust therefore
occur relaty ely close to the cylinder,

15

Turning to the work of Cooper and Tulin it now 1s clear why they
tound that the increase in wall shear ¢n the cylinder for favorable gradients,
when compared with the shear on the {lat plate for the same favorable
gradieni, 15 less lian vhie increase oin tie cylindes an umidorm {ew whean
compared with the flat plate 1n uniform flow. The ronverse is true for

adverse gradients. In other words, what their results say. (see Fig. 4,

Ket. 15), is that for a given value of z,/.\lk /v
o / O

—~ \
e v \ i \
: Teyl, fav, grad. /L f-p same adv. grad.h )
i il e i S | G G i 5
Ceyl. adv. grad. /'\,\ U f-p same fav. grad,

But, the wall shear for pianar flow witlh an adverse gradient 1¢ less than

]

P

the wall shear with 4 faverable graedient. Since the producs shown above

P 2

viast be areater than unity, 1t follows thut at a paven value of L./
[

viall mbocar on the cyhinder 1o favorahle pradient 1e greaicr than the

%4{&*9& B
- 1 )
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wall shear for a cylinder in an adverse gradient. Certainly, this re-

sult ts obvious although it was not expiicitly poinied out in Ret. i5;

y

: 0o A
that is -dp and ’_l_l_':._g-— 2—; /g '(:') add when the gradient is
ax g

favorablie and subitract when the gradient 1s adverse. This interesting
problem of {he "interaction' of the pressure gradient term with the
trans .erse curvature shear term which manifests itself like a favor-
able pressure gradient, 15 reserved for a forthcoming paper.
Additionatl conclusions which can be drawn about the present work once
1t is recognized that the added shear term behaves like a pressure
gradient, will be reserved until the equaticns are obtained in the form

ir which they will be solved,

2.3 The Inctompressible Plane and Similarity Considerations

The boundary layer equaticns now being in a nearly-two-
diinenzional form, svpgest first a transformation fromn the com-
pressible Lo an incormpresszible form. However before attempting
to do this two assumpiions are made; the {irst is that the viscosity
varies linearly with the temperature, while the second one 15 that
the nressure pradient 15 taken to be zero.

s

5 - . )
Followinyg Chaprnan 2@ parameter O is inironduced such that
5] ! f o
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Sinice the Prandli number and specific heat are conastant, the bhoat

coacuciion coefty o vories an the same mancer - o the coefiicwrnt




nf viscosity. thatis

The constant C_ can be determined by matching the viscosity relation

' : o 25
with the theoretically determined value ‘e, o, Hirschielder et al™"} at

ihe wall temperature, s0 that

o
Lo 2

j\

e \'/—__

Te )

When a serm:-emgpirical relation suvh as Sutherland's cquation is

employed, then

/‘.f‘_ — 4 W )
e ! | :e_/ 1
/e |
‘ !
i
|
and : !
ﬁ(_,l,__ e Y i
+ L v le )
-8 /'TC.' \
T
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Fraoe T b sug finds that O < ¢ L 1 A~ srinted ont :
w ¢ e
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by Chapman and Rubesin  the above rclation retains the advantages of
the linear forrn while allowing for greater accuracy in the impottant :
region of the boundary layer flow near the surface rather than near the
free stream.
iceaiistical v of course the condition of ziero pressure gradient :
!
s¢ that p == constarl == P - iv caly realized in two cases; a2 cyhindex :
. . |
with 115 generators paraliel o the How, and an unyawaed vone in super- :

sonic Slow. Lo the case of = yiinder, thero o oonsude saple compiica -

tior mear the nost. Thearsiically however, one can visuahi=e & case

in which suctinn throush the ivsteryne of the sylinder imokes the

Vi




stagnati'n stream surfaces coincide with Lthe cylinder sucface, Thie is
supposed posctibie even in supersenic flow when there is a detached
shock wave in {ront of the cylinder, The boundary layer is then supposed
to have zero thickness at x = O. Of course, as pointed out in the in-
troduction, the overail flow problem i1s to be treated in such a way

that al possikble information about the nature of the ‘low downstream

of the "immediate nose repion 1s obtained, which does not depend on

the detailed hastory of the {low 1n this regron.

[t is we!ll known for a cene 1n supe sonic flew with an attached
shock wave, that the values of all physical quantities are constant
along the cone surfacc, As has already been pointed out however,
other effects might arise from the propagation of the immediate nose
intluence downstream, or pnssibly from a sclf-induced pressure
gradient, These and other phenomena which have not already been
CONELGs rend i e hot LaKen iNio advount  abid eiin iouni e borao faoasaed
when comparing ihe results of the present investigation with experi-
mental data.

¥or 21l other body shapes und flow conditions, the pressure
gradient 13 not zero. Actually however for certain body shapes
and thight speeds the conlribution of the pressurce gradient inight be
ner arder than the transverse curvature effect, Therefore

onoe the hody shape 14 known it may be possible o dete mine the

order of the pressure gradient in comparison with the order of

e s ) ; e o S a3 g R

SE e The envestipatiow of thne proble oo wall Risg e resceryved
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In order tc transform the modified bonndary layer equations

o
! F.gs. *_14)-’16)} to an incompressibie form Howarth's transferma-

19

tion is used. [t s defined by the change of independent variabies

X, .; tox Y where

b A

I g

ol
al

T
\i.d) e
50 that
/9 A o5 N
i i ;g a7 o
[ o5 = e A ¢
B e 2 X g S g SNy
2 1 Y o oY
{(17b)
& » = J
= "T' e " .y "—‘"
’3';} /’e oY
As it turns oul, it 1a more convenient to use the stream function
J* as the dependent variable, It is defined frem the equation of con-
i

tinuity [Eq '_4)} which is satisfied immed:ately by writing

; . "
. - - Loy = - 2
. le : - /Je 2 A
f

D
<
i

3
al

Since the present paper is concerned with a two-dimensional analoguec

it 1s more appropriate to let

o= kf//" 1

By menans of Egs. i7) and (18} the irans{crmation of the boundary

layver momentuny and easrgy cguanons 1o the almosi two-dimensional

% -¥Y olane gives {or the marmmentum cquation
¥ A | '

incomnressible
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and for the energy equation

Q)
3.,
3

|
|
i

R

[SEFRR)

Y, 14 . L2 ol
_\g . ey - ch[‘)\ - _C:eyg ;*,3 _ 9/{ /9_11/1.

a2
X
Q.
w
Q.
>
<4
[
—
~

20)

=
]
—

l

dlLgyvetmd | 10 (/2’.1.;; /r’-e-ed)’) L 9

<+ P a7

r

28
lingworth  has ¢xamined the problem of the conditions under

which similar velocity and temperature distributions for different
values of x can be tound [ compressible planar ilow. He concluded
that such solutions only exist if the exterual velocity is constant, and
then 2as 11 incompressible [low the sunilarity variable 1s of the forin
v/ [? Since to the approximation of Mangier the axialiy-syrmnetric
comp.ressible boundary layer equations can be put into a two-dimensional
form, then it would appear logical to scek solutions in a variable pro-
portional to v/ ‘/—; inat 15, the Mangics resuit Wouid pruvide o

th -
so-called zevo order solution for the present anaiyvsis. However,
even to the ¢ pproxamation of Mangler, although the velocity and teimpera-
ture distrivuorons a:e derivahle from ordmary differential equations,
these distributions are not stmilar in the sirict seasc. £ would
nevertheless alse be interesting to detevrmne under what coanditions
if any, "pseadosimiter profiies might be obtained without any

eporuximations tn the boundary layer cquations other rhan thoze nl-

redy snade, 3 a o similavity varniable noas dafined o8
’ {

P R
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then the transformation eguations arc given by
/2 \ /3 M 9
i gy = 7:_/ S S A
L%y L 2% /o 5% 9M
_ /
{21b) .
P Vs N\ a
sy T ] x ° i
Fyrom the above relstions the momentum and energy cquations
. 7
{Eqs. {19) and (ZO)j become respectively,
N T U eEN e w\NEYT Qlewemn |55 -
2P s P ¥ A L fe¥ N [GeMe) Tk o deeR R o | L
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) > 5% M X oy A% Lam'y \ X/ vy T 1_8707:2
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~ —~ o, / 1 'I} A3 - 3
2F vh o Aoy L [aede PR v/ M § 2 W\,
o = W = = fBp 7 ey, %] | em’
2 2% a7 e . x 70 o Y 8
(23) 7 j / &%) | 7/
- /.’\ , i / 1 /_\2__\,2_ \]
_ algecen§ L 3% ([Tg], (e yEy T,
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With the equations in this form we may now inquire as to the con-

dition for the existence of "sinnlar' profiles or more correctly

the requirement tor the reduction of these partial diiferential equa-
tions to o dinary diiferential equations.

in general one can write,

\\ '/"‘. == e /‘
~v, e ) T {
L ( | 2] &, o P T X )

&i

&)
~3
SO

4’

(24a)

and
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However if it is assurned that sav, { and A are functions of ?;)

alone, then on substiiutiorn >f the above relatvns both the momentum

and encroy equations should rovolve only the independent variable 'Y{" y

If thrs 1s done, the left band sides of toth Bas. 22) and {23) are in {act

It

found te be dependent only upon % . but the righi hand sides invelve s
f

funuction of " multipihied by a tunciion of x . Therefore for pscudo-

similarity to exist tha body st have a shape such that this function

ot x, given by

(€% Loone J%

|
|l e ;1‘ O:-

1
N

is 2 congtant. Dinve sund o dr, , then the criteriom for the bedy

dx
shape 1s the tollowing ordinary integro-diiterential equation in r .
S
| ’ 5 A A = rarndod '
' i ) -
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ordinary differential equation tor the velaaity distribution 1n incom-
pressible flow which results when the above relation is identically

) i e ’ \
satistied. tlere, no approximeations regarding the order of Z,.'. /r
.’[ 4 b} ' ()

nhave been made, se that the ordmnary differential equations wiheh
rosult are vand for Lotk the acse and downstrcam regrons.  The re-
lation descirinnyg lhe bedy sShape is son- hiacar and no aintogral of 4

W
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nas been ionnd., If however, the bedy vs assuwmed sutiictently slenda -
b

N & d"fo\z
so that oL = H} and hipher order terms can he neglected,
. /

then the equation becomes
‘ 2 [*8
J'""“o L = constant

-\
- . 8 ¢ i : / . -
This can be integrated imumediately £ give r, = constant § x. To the

order of approximation being vonsidered, this s the equation of a

paraboloid. This same result can be obtained by assuming at the outset

that the bounda:y laver equations can be written wn the cyiindrical polar
torm used in analyzing Lthe tlow over a cylinder.
Returning to the general case, | and A are {unctions of the two

variables x and M As noted already wn great detaii, in the prescni
|
paper we arec concerned prumarily with the downsiream region where
I/\'. 2 . . . - .
L.,.,’r,) is less than or possibly of the order of unity. Legivallye there-
AN

fore, in order to solve these non-hnear partiat differential equations in

such a region both  and A <ould be expanded in asymptotic series in

o
powers of a parameter \ ‘>~ 1_/\._> g wi g coeiniarts a2
A A I T R AR

£

¥ 1s small in comparison to unity, ‘see Eq.

functions of "17 alone and

(2) ). The natural coordinate systern for these equations would there-

Ty

fore he and 7 . In the Mangler region, which is after all @ part of

the downstream region, one hinds that the boundary layer thickness on

hodies of revolution under zerc pressure gradiont 1s givea by,

“As noted in a fostnote in Sect, 11, the apprexamation is excellent

1or the regions being considered,
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Therefore a parameter

\ = /
ﬁ ~s --A—- ~ gcmt’( -~ Condtd g, f¢zdxzfl
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is chosen, which when properly non-dimensionalized is given by

R r::‘
[ c (3 L oL | I
(25) F = ,
N 44
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Py making a final transformation of coordinates from x, ‘7{7 tc

tyy
~3

the momeontum and energy equations become respectively,

- 2 " Sl e
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It rnust be emphasized that within the boundary layer approximations

these eguations are valid for all valuss of FA /ro
2 -
Ot interest s the fact that when ¢ == constant the un-

pheation from eather the asyvionishic vvpanstons or fhe tovegoing

!
;;
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cquations 1s that { and A are functions of 6? atone. DBut f‘ = constant
is just the integro-differential cquation describing the "near paraboloid!!
which was found previousiy as the criterion {or the reduction to ordinary
differential equations. In other words, when the boundary layer thicic-

ness goes like the body radius sirmilarity 1n its restricted meaning is

possible.

2.4 Summary ot Mathematival Development

e %

At this point, it seems suitable to sum up the transtormations and
assumptions that have been made. Thus for a pertect gas with consiant

specific heat and Prandti number, under the assumpticns of a hinear

viscosity-temperature jaw and zoro pressure gradient, a transforma-

tion of coordinates has been made from x, v to f‘ , M where

!
e~ Cr ? Y
fix) = [E% e 7)Y dx
v I v He T <
-
. ; s
¢y = Mg~ e |l W O
0?‘/73) - ’/"“"“"" ~ /s Jl.f,;-e . «(3

/Ce ‘V’g lf i-{:o{)( .{"‘

The transiormation equations

are piven by

e 45 3  m
= = . T ==
3% Jx 3% o 377
and o
) i ;o Me i { ek 2
2 = LD e CAS
DR Poul Sy LS O £
o <~ / J 5 ‘

where tn this case

it 13 not nevessary to evaluarte PR o

A stream function \}/ which satisfics the equation of continmty

vensicsile, oL defined by

§
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The static ternperature raiic which is also a function of E and ’,;, 15

written S .
™ = )\(E 07)
ie :

e =
The partial differential eguatiens defiming (3, ’7 ) and A ( F, )
i

T A F b 2 &
valid {or all values of L\/ro within the boundary layer approximations

are gizen by Eqgs. (26) and (27).

B SOLUTION OF EQUATIONS
3.1 Asyraptotic Expansions, Boundary Ccuditions, and 'Z.rtrot_}i
Order iguations
As noted nreviouslv, f and A are to be expanded in asymptotic
series in powers of the parameter _{? . where the coefficients are

e Giom e ot ‘7 aicne, that g

o0
2 3
- ; ar e 1 el f.h
12%a) ~F(,-k‘-‘) A?) =5 J'io ("7/‘ e ’E-F,{};) 7 E#ZL/‘?)? ) ) “,’:ZJo Ir 3“7’/
5
and
~
% : i, - =3y
(Z29b) A (IC",’T/} - /\O’Iﬁ ) LS f/\,("'},\l N /)‘1/7), - v ’43(‘7’/)
.
d
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§ 13 assumed (o be smail 1n comparisan to unity, It will be seen, that
the coeflicients fJ and )\J for j 2 1, wall be functions of "r/ alcne
only sc lony as the body shapes which are considered fall into certain
prescribed classes. It is of coursc these prescribed shapes with which

the present paper 1s concerned.

The boandary conditions fu.low fror Egs. ([7a) and [7b) as

({0 = £'(0) = o for j2 0
(30a) 4

i )

(e®i=1 , ((09)=0 for j 21
and
{30b) )OO) = >\w > AO) = O 1} 21 non-insulated

] boundary
)\J () = ¢C jZ O insulated boundary
P =By =1 )\J('XP) = O for j =21 bouh cases

Substituting the asymptotic expansions nto Egs. (26) and {7} and
Cyuaiing v 2ir o 2! tovvaa with the same power of f , a double infinity
of ordinary differeniial equations is obteined. All these equations ex-

i . th
cept for the zero order vnomentum equation. are found to be linear.

e th :
In the present paper, only the zoro and first order equations are ¢con-
P pat Y
sidered, but the methods of solation can be extended io higher crders

tf necessary.

th
In zero order, the momentum 2quation is given by

‘\"1 ‘f‘ i = _f .}[QI/ e Y

fanacy Vot

j

(95
==
—
8]
i
(8]
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with boundary conditions {0} = fo’.C) =

W
o
jo¥
.y

{e€ ) = ). Thisg

15 of course the well known Blasius equation, the solution eof which

“\

>
mavy be found tabulated by Howartk, as well as in other standard

works. It is to be noted that to this order the Blasius equation des-

¢ribes the flow fer all bodies, and the shape doues not enter the prob-
lem except as 1t 18 prescribed in the coordinate transformaiion which
in this approximation is given by Mangler, Of course, such a reszuli

is to be expected since 1t has been azsumed that the pressure gradient

= _ . th .
For the enevgy ecuation, the zero order rolation i given hy
> 1 B 4

| ¥ L% ’ Efa® PR A
(31b) l?; )\o T S.t’\)‘o ki (U--I}Me o = -

—

with the boundary conditions )\O.O) = o for heat transter or

)\OO) = C with ¢n insulated wall and A _'o0) =1, For Pr=1

0

the complets analytic solution of the energy equation has already

. N
|k a4 == 7 n =3 » . ;o
Leen given j g, (Y} . wihile wor Fro+ouibe nuaccicwd Saalpen e
ot

=

A 30 : . .
been tabuleted by Crocco for various values of the Prandti rnumber,

3.2 ¥First Ovder Equations and Admissable Body Classes

On carrying out the prescribed substitution of the asyinpilotic

,.
3

%
o
5]
I
=
2
It
s
5
e

fivst order momeanlurm equation 1s found to be

!
i
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where e = ()\,Jr»'[;)of:v] . and wheve the boundary conditions are
i ~

1

({0) = f,(0) = 1'i ‘o) = 0, Of course, £ which is defined by £gq. [28)

musi be equal to a constant in order that {,= f.l: 73, and i1t 15 this
1 t
condition which prescribes the allowable body shapes in the present
analysis. Again however, the resultant intcgro-differential equafion
M ~ ) o

cannot be integrated except when rg= O which corresponds io the
cone and cylinder, unless we lirmit ourselves te sufficiently slender
bodies. Far the shavp nosed slender bodies being considered, the

. : o2
slope ©( can be supposed srmall so that terms of order X and

higher might be neglected, and

s0 that

YA 11/1
oo = (f — ¥, x|

. AL . R A T | ~ * 1 %¢ 1 1
L Lanas c)’li;;i.)nf\."j:‘A~/.4. Ry R gTtu '!..".‘ ~curvature ¢ 1e siven hvy
i -

~ »
74 - 2 o ~

, =] "

Note thai the indicated differentiation 1s with respect to distance aleng

the surface, and not along the axis., [f Kl is considered to be sulficient-
. (2 L =
ly srall, then Fa /1-rO ) 15 small when compared with 2/r  and can

i o
be neglected, so that the equation 2¢ = constant reduces to
b A —smidi e 2 cONStant

As noted previously, in the case of the cone and cylhwnder the above

reiotion 1s exact, froegration oi this equation gives two matlhematically
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adrmissable classes of body shapes. The first:s r = ax 10y .1/2

Since r_ must be finite at the origin then n 2 O, One might note,
that {or the cylinder and cone, 20 = O, and 2/3 respectively. The
sccond class of bodies 1s r = a e which correzponds to 0 = )
for all values of a and b, In any eveni the exponentially shaped open
nosed bodies of revotlution have doubtful apnlirability fo aerodynamac
probiems, particularly under the assumption of zero pressure gradient.,
Nevertheless, as wiil be shown by analogy with the two-dirnensional
flow with pressure gradient, there is soime guestion as to whether

ive valuecs of b even admiit a solution to the problem. !

The equation in 1y l{:Eq. '.'5/.)_] with different right hand sides,
o

29

has occurred previcusiy in the anaiysts of Howarth™’ on the problem

of an incompressible boundary layer 1n two-dimensional flow under

a linear pressure gradient. The equations ‘(l ; [2 i rE fg

occurring 1in Howartn's Case vorrespona L0 values Ot

@ i 2

= W N Y WA/ L., <1872 respectively., This mathe-
rnatical simiiarity bears cut the previous 1deas regarding the fact that
11.e {ransverse curvature effect manifests 1tself 1in a2 manner similar
to a pressure gradient in a two-dimensional {low. If the analogy is

carcied jurther, it 15 immediately evident whyv the body shapes which

bx
= e

< 1
were found, wer:s of the form r 2= 2ax and rO: a
(5]

. This

folows from the {act that vn the present problem the body radius

1

r s, roeplaces the exicrral velocity, " x). of the two-dimiensional
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incumpressible pressure gradient problem sol od by Goldstein,
iz irizd to detevrnine the externai velccily distribubions which weould
give similar profiles. The only admissable solations for the velocity
were those found above for £5 + and furthermovre in the exponential
case Goldstein felt that b bhad to be positive. This was verified

) ) 32

shoerily afterwards by Hardy.

Asswming the shapes to be such that A = constant, then Eg. (32)
is a third order hincac ordinary differeniial equation an = The
homogeneoas egnuation 15 however aaly a perfect differenual in the
case of 4 = |, which corresponds to the exponential body shape,
iFor all other values of X, the equation has to be integrated by

numerical methods, sithough 1t 15 possible to reduce its order by

wiiing

o~
(8]
(S Y)
RS
—
2
~
i
r~
7
%]
R—
3

} and g{w? = Lz(“r?)

By use of the Blasius relation for {_ the equation in [, is then
reduced to the following second order lirear egquation in G:

Fu L rei o R L e L [ B PPN
34) .FOIG’ + (31, *infafo/)(g Ty 73‘“'.’5‘“3‘01%&]@ o f}["cu'70>

J

(>3

This equation can be numerically integrated once the value of oK

et

ras been sefected. Integrations have been carried out for G ir
the cases where g = O and 2/3, which correspond to the cylinder

and conc respectively. The detailed moethedology used wall be pre-

5

orthooming paper.
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The fHirst order cnergy equation is given by

1 .

O LA S -w)E A

| o !o : A
15} = r
S = =4, (=), - a(y-1)M, £, -~ ’-5;}- (Ao,’?o)—j/b/-!)M 7 1, "
where % and ’?/'o are as defined previously. The boundary conditions
arc that /\'\1;0) = ( for the case of heat transfer. v }\). 0O} = G for
the insulated wall, while >\ij o0) = . For Pr = 1 the solution 1s
known, but for Pr 3 | the equat:on must be wntegrated numerically

by methods similar to those used in determuning G (% ).

1,3 Some Numerical Results for the Cone and Cylinder

Orie of the primary guantities of interest is the wall shear, or

skin friction coefficient ¢f which is defined by,

T U

- - / 3\3)
9/’“

If the appropriate asymploc expansiun 1o suusiiteicd 77 f2an he ehnum

to reduce ta

s e s
sl e s afat  ls

Ue ZSJ ,mx{h

=28

s
§ 7'3 (/0)

/‘.\

-
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C! vqual importance is the lo:sal heat transfer rate winich is

defined by




- 44 .
In the case of Pr= 1, {rom the partwular integrat of the ¢nergy cqua-
tion given by Eq. (9) it is simple to show that the loca! heat transier
rate is dircetly related to the skin friction coefficient Reynolds analogy)

by the tollowing relation

(37a) 3 L )

S

/7
i T o 3=l 5 v )
g, = "7 Cpfele e {1+ 5 Mg ~ Aw | s

However, in general when Pr :',l‘ i then

og
L T [oomaw Yo L m3afpy
37b) g = = —F Pele JLateae e rCA, (o)
| [/ e | fTai, Ik A T
s o :J')(( -0
¢ 41 B é

To simplify the numerical work the FPrandil number 15 taken equal
to unity since in that case, the Reynolds analogy parameter 1s constant
and only the wall shear calculation nead be carried out. Fuarthcrmoere,
anly the first order correction f or J =1)1s examined. The body
shapes investigated were the ¢one and cyunder, windi are ofizr all tha
cazzr <here the asaumption of zero pressure gradient can be thec-
retically justified.

Fer both the cone and the cylindey the resulis are presented as the
ratio of the sxip friction obtained by considering the transverse curva-
ture cffects not taken mte zccount by Mangler, to the skin friction
which one would get using the Mangler formulaton, The caleulated

P 2 - #y
values were obtained by the numerical irtegration of Eq. (24), which

gclves for the cone

—:::E—-.- vame ” ! g e ~ - ,. g 2‘./?
(38) i, = Fo* c[-&' CF7 +C M3A, 164 F m)pMgirans
T 3 e
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where E '-'—‘;‘—':::“;‘N""; ~!(~’§“;32’ and the subscript ¢ represents the in-
viscid values downstream of the conical shock. Strictly speaking of
course, the cone solution should only be valid for supersonic flow

with an attached shock however, in Fig. 4 which is a graph of Eq. {38}
for % == 1.4, the vslues are carried down lo Me'-':'- O for continuity

purposcs., For the cylinder the first order equation governming the in-
l L)

crease in wall shear 13

C ' 2]
oy g : ) . DY =
(39, (?f)m = | + £loesy +1udTA, + 0173 (¥-1) Me[t-.--
& X
where (= '.’1'."\/(,{,4 ) , and the subscript e denotes values in the
e x /<

indisturbed free stream far from the body. A plot of Eq. '39) for

¥ =1.4is given in Fig., 5 and it 1s of interest to note. that the
et 3
f"\.y ze C,F i ’t{.M
value of the ordinate parameter e for
.

A w = 1 and Me:: O is 2.09] which compares with the vaiue of
2,12 given by Seban and Bond,

From Filgs. 4 and 9 1L an e een that Below o ivias b Llaies Ui
about 3 the mncrease in skin friction coefficient on both the cone and
cylinder tor ithe heat transfer case is praciically independent of the
Mach number, zltnough the dependency becomes significart around
M, =5, andincreasiegly qmportant for all migher Mach nunbers,

This 1s simply the manifestation of the increase tn viscous digssipa-
P'Y 1

tton associated with the hugher fhight speeds. 1% 1s also clear boihn

~ g r e ogs E i ak s . e

from Figs. 4 and 5. and Eys W81 and  49). thal the slan feicuion 3s
& yoit X : . " -

targer at a covstart 7 fha higher the vafio of wal Lo otree siveam
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termnperature. 3ince f is proportional ic [A /Ty » ite constauncy umplies
a consiant volue of the transverse curvature paranmieter., Finally, fromn
Egs. {38) and _39) it {ollows that {or the same surface temperature ratio
and Mach number on the cone and cylinder, at a constant value of the
transverse curvature parameter, the skin friction in. rease will be larger
on the cviinder than on the cone.

Cre of the more important resuits obtained from the calculation is

the approximaie range of validity of ithe solution. As was noted in Section

1,2 the ordinate of Fig. 3 when divided by 4 3 represents § for both

thie cone and cylipdaey, Thu«, 3 the anpe where § is small compared

= : =3 s 5 =
to urity is consideraed {hen for { Lo ,/;'(_)M:’-— 1, 0.75, and 0.5 we have,
vé

by way of example, at Mew 4 that § .s 0.107, 0,081 and 0,053
respectively. In the case of the \nsulated cone this gives values of

(cf - c¢ Vee = 0.65n, 0,42, and 0.28 respectively. It would seem

that 1n this case for A/rn == 1 the change in ¢, 15 somewhat too
large to be given accurately by only the first teem in the expansion.

T g

Nevertheless, what is clear is that for § less than about 0.1, some-

s,

what less {or the cylinder), which correspoads to /f.\.)/ro in the range
less than or of the ovdar of unity, the present formulation would appsar

1o be valid. It has alreasdy veen shown that thys region 1s in a practicat

-

range of interest, Therurare, for .-{_: /v &1 the increase in skin
< ! ) ~

triction over what Mangler predicts can become imporitant, and this

change can b2 determived bv the forruulation gives in the present

T -

Fioo 1 the lucal hest transfer vate s directiy

paper. (i course for
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rroportiotal to the skin friction, and is given by Eq. ‘37a). A final
resuit which should be noted is that the displacement thickness for
both the cone and cylinder is decreased from the Mangler value, but

only slightly as expected.

4, FUTURE INVESTIGATIONS

One of the main problemis for future investigation is a study of
pressure gradieunts in axially-symmetric {low and their “interaction"
with the transverse curvature phenomena. A study which would in.
clude both the hypersonic seli-induced pressure gradient effect in
addition 1o the trarsverse curvature cffect weuld also be of consuder -
able interest.

An i1nvestigation of the conditions under which the assumptioon
of zero pressure gradient is justified ts certainly required. It might
be pnssible to determine this for the given body shape ard tlight
speed by making a comparison of the order of the pressure gradient
with the order of lf.}x/r0 ;

Since the calceulations in the present paper have only been

carried out fo firsi order, 11 would be worthwhile to evaluate the

g 2 .
L contributions *0 increase the accuracy of the resulrs and to
estabiish more closely the vange of validity ot the present solutions.

in addition, some aumerical imegraticns of the enargy equaticy for

Prandil numbers diiferent {romn unily are needed, noorder fo detar -

myine whe effert O the heat transtor rate and recovery factor Yoo
el vuses s nmioht by pegcable s examine e rerooeey Tac Lo

| - - H ¢
s Welaws. @) k’lt;i arry .

G T




in the present investigation a linear viscozity-temperature velation

has been assumed, <o that ¢ checlt ita accuracy sooie calvulations should

[

be made m which a more realisiic relation is uiilized,




a1 -
CONCLUSIONS
1. The vissous iransverse curvalure efiectn acally-symmetric
flow 1s characierized by the pavarweier ,_/,\_‘_\/"0 , where & is the pro-

jection of the boundary layer thickness or more precisely the displace-

mend, thickness onto the transverse plane, and B, is the distanse from

any point on ithe body w0 the axis of symmetry,

2. Thsre are two main asymptotic flow regions, which for a
pointed body of rovoiuticn, wnege the radius increases with axial dig-
tance, can be represewnied by |, a "nose' region distinguished by the
fact that £ /'rG > 1, and I, a "downstream' region where A /’1‘0 is
of the order of, or less than unity. The two regions arc separated by
a “transzition' zone where N .’ro ts aintermmediate between these values.

3. The nose vegion is characterized by the fact that the stress
term arising (rom the transverse curvaturc bLecomes ¢f the same
order of magmitude as the usual Viscous Stress term o the ineLiura
armne tinn The downstream reoion 18 cha~acterized by the fact that
the eifects produced by the transverse curvature can be considered
Lo be essentially o perturbation of a fiow which, in the liinit of lk/(b
very much less than unmty, approaches a twe-dimensional patiern,

4, The dowpsirezm domain 1s divided into three sub-regions
tavh one of which ¢ a Itmitiag case of the other, The firsi iy where

ff:_\,,."rc, i very much less thar umiby and the offect of the axial-

syrammatry is neghizible and the flow apnroacihes a iwo-dimensional

~igder L
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transiiion {0 turbulent flow teok plave. The sccond sub-regicon is where
,,,A/r() ie smiall compared to unity, {say 0.1 or less), and this is where
Mangler's tormulazion, which takes into account the transverse curvatuve
elfect only approximately, 13 valid, Tiw third sub-region is where the
boundary laye. hickness beging (o 2ppruach or become of the order of
the body radias, '
5. The Pusemann infegral of the twa-dimensional eneragy equaticon

for Prandtl number unity and an insulated surface, with an isoeacrgeiic

frev sircam and arbitrary pressure gradient is valid under the same

cenditions {orv awially-symunetric flow, wn whech the fransverse curva -
ture effects arce considered, The Crocooantegral of the iwo-dimensiona
encegy equation 1s also shown to hold for the constant surtace tempera-
ture, znero pressure gradieni case with Prandt! number unity,

6. By means of the coordinate transformation :

= | (x,
Ax and y = -—-(-‘x—z—)’ oly
¢ = 4

which generalizes Mangler's transformation, the bhoundary layer

Py
o
[
~
]

eqguations are reducible to an almost tvu-dimensionzl iorm,
r(x, vy} s the distance frora any poini in the bunndary layer o the axs

of symraetry, and L is 2 charazteristic refevence length,

7. The additscral term which arises 1a both the momenium and i
ertergy e6uations A5 a resuit of the transverse cuvvatare, has the

same eitec Loy an extornsl faverable pressary gradiesnt, at leastan

N R R S D e e I ST

A . e LaldzTarss nhed” _ Xy
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the region where ..\/~rc ig less than, or oi the cider of unity. OCn
this basis results oblained by previcus authors can be interpreted.
& For a 'near paraboloid', wiih the axial pressure gradient
assutned to be zero, withoui making any approximations in the
voundary layer eguations 'similas' profiles cau be oblained, Here.
similar s used in the resiricied meaning that the velocity and
temperature distritbutions are derivable {rom ordinary differential
equations,
,
5B 5 AN y
9. Within the region where L5 /r  is less than ov of the order

(&)
W

of unity, solalions of the axially-svmmetlric boundary iayer cquations

for zero pressure gradient and boady shapes where r, = ax”  or
bx ’ — : S :
r, = ac can he obtained as asymptalic seriss for the velocity and

. 2 - - _a
tempe rature in ascending powers of o parameter § . Here, 3

is small in comparison to unily. and is proportional to é.\,/"ro . The
thy
zero  approximation is the Mangler result,
10 The firet order correction to the Mangler formulation for
Pr =1 shows, that at least in the case ot the cone and cylinder, the
effect o bpoth the skin {riction coetfficient and keat transfer raie can
become appreaiable in the range where A /ro is less than or of the
order of unity, At a constant 2% /r0 . lhe effects are increased in
magnitude when either the ratio of wall to {ree siream temperature,
ov NMach number, 18 increased. Alsc, all other condinors being
equal, for the same value of 5 /g the skin friction cocificient

; ; i y Beal A— g Brvar Giar o
and hence heay fravsicr) ancreany o e wylacder s grealos han

<
1
i}
1
1
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that on the cone. The displacement thickness for the cone and

cylinder is decreased from the wlangter value, but only very

slightiy.
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